کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5777410 | 1632752 | 2017 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this paper, we use a branch of polyhedral geometry, Ehrhart theory, to expand our combinatorial understanding of congruences for partition functions. Ehrhart theory allows us to give a new decomposition of partitions, which in turn allows us to define statistics called supercranks that combinatorially witness every instance of divisibility of p(n,3) by any prime mâ¡â1(mod6), where p(n,3) is the number of partitions of n into three parts. A rearrangement of lattice points allows us to demonstrate with explicit bijections how to divide these sets of partitions into m equinumerous classes. The behavior for primes mâ²â¡1(mod6) is also discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 65, October 2017, Pages 230-252
Journal: European Journal of Combinatorics - Volume 65, October 2017, Pages 230-252
نویسندگان
Felix Breuer, Dennis Eichhorn, Brandt Kronholm,