کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5777410 1632752 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Polyhedral geometry, supercranks, and combinatorial witnesses of congruences for partitions into three parts
چکیده انگلیسی
In this paper, we use a branch of polyhedral geometry, Ehrhart theory, to expand our combinatorial understanding of congruences for partition functions. Ehrhart theory allows us to give a new decomposition of partitions, which in turn allows us to define statistics called supercranks that combinatorially witness every instance of divisibility of p(n,3) by any prime m≡−1(mod6), where p(n,3) is the number of partitions of n into three parts. A rearrangement of lattice points allows us to demonstrate with explicit bijections how to divide these sets of partitions into m equinumerous classes. The behavior for primes m′≡1(mod6) is also discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 65, October 2017, Pages 230-252
نویسندگان
, , ,