| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 5777613 | 1632967 | 2017 | 23 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On the number of cliques in graphs with a forbidden minor
												
											ترجمه فارسی عنوان
													در تعداد کلاکی ها در نمودار ها با یک جزء ممنوعه
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												شمارش شمع، ممنوع است تعداد هادیفر، روش کانتینر،
																																							
												موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													ریاضیات گسسته و ترکیبات
												
											چکیده انگلیسی
												Reed and Wood and independently Norine, Seymour, Thomas, and Wollan proved that for each positive integer t there is a constant c(t) such that every graph on n vertices with no Kt-minor has at most c(t)n cliques. Wood asked in 2007 if we can take c(t)=ct for some absolute constant c. This question was recently answered affirmatively by Lee and Oum. In this paper, we determine the exponential constant. We prove that every graph on n vertices with no Kt-minor has at most 32t/3+o(t)n cliques. This bound is tight for nâ¥4t/3. More generally, let H be a connected graph on t vertices, and x denote the size (i.e., the number edges) of the largest matching in the complement of H. We prove that every graph on n vertices with no H-minor has at most maxâ¡(32t/3âx/3+o(t)n,2t+o(t)n) cliques, and this bound is tight for nâ¥maxâ¡(4t/3â2x/3,t) by a simple construction. Even more generally, we determine explicitly the exponential constant for the maximum number of cliques an n-vertex graph can have in a minor-closed family of graphs which is closed under disjoint union.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Combinatorial Theory, Series B - Volume 126, September 2017, Pages 175-197
											Journal: Journal of Combinatorial Theory, Series B - Volume 126, September 2017, Pages 175-197
نویسندگان
												Jacob Fox, Fan Wei, 
											