کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5778327 | 1633768 | 2017 | 50 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
The twisted inverse image pseudofunctor over commutative DG rings and perfect base change
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let K be a Gorenstein noetherian ring of finite Krull dimension, and consider the category of cohomologically noetherian commutative differential graded rings A over K, such that H0(A) is essentially of finite type over K, and A has finite flat dimension over K. We extend Grothendieck's twisted inverse image pseudofunctor to this category by generalizing the theory of rigid dualizing complexes to this setup. We prove functoriality results with respect to cohomologically finite and cohomologically essentially smooth maps, and prove a perfect base change result for f! in this setting. As application, we deduce a perfect derived base change result for the twisted inverse image of a map between ordinary commutative noetherian rings. Our results generalize and solve some recent conjectures of Yekutieli.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 320, 7 November 2017, Pages 279-328
Journal: Advances in Mathematics - Volume 320, 7 November 2017, Pages 279-328
نویسندگان
Liran Shaul,