کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5778351 1633768 2017 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence of HKT metrics on hypercomplex manifolds of real dimension 8
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Existence of HKT metrics on hypercomplex manifolds of real dimension 8
چکیده انگلیسی
A hypercomplex manifold M is a manifold equipped with three complex structures I,J,K satisfying quaternionic relations. Such a manifold admits a canonical torsion-free connection preserving the quaternion action, called the Obata connection. A quaternionic Hermitian metric is a Riemannian metric which is invariant with respect to unitary quaternions. Such a metric is called hyperkähler with torsion (HKT for short) if it is locally obtained as the Hessian of a function averaged with quaternions. An HKT metric is a natural analogue of a Kähler metric on a complex manifold. We push this analogy further, proving a quaternionic analogue of the result of Buchdahl and of Lamari that a compact complex surface M admits a Kähler structure if and only if b1(M) is even. We show that a hypercomplex manifold M with the Obata holonomy contained in SL(2,H) admits an HKT structure if and only if H1(O(M,I)) is even-dimensional.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 320, 7 November 2017, Pages 1135-1157
نویسندگان
, , ,