کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5778372 | 1633770 | 2017 | 56 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-commutative crepant resolution of minimal nilpotent orbit closures of type A and Mukai flops
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this article, we construct a non-commutative crepant resolution (=NCCR) of a minimal nilpotent orbit closure B(1)â¾ of type A, and study relations between an NCCR and crepant resolutions Y and Y+ of B(1)â¾. More precisely, we show that the NCCR is isomorphic to the path algebra of the double Beilinson quiver with certain relations and we reconstruct the crepant resolutions Y and Y+ of B(1)â¾ as moduli spaces of representations of the quiver. We also study the Kawamata-Namikawa's derived equivalence between crepant resolutions Y and Y+ of B(1)â¾ in terms of an NCCR. We also show that the P-twist on the derived category of Y corresponds to a certain operation of the NCCR, which we call multi-mutation, and that a multi-mutation is a composition of Iyama-Wemyss's mutations.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 318, 1 October 2017, Pages 355-410
Journal: Advances in Mathematics - Volume 318, 1 October 2017, Pages 355-410
نویسندگان
Wahei Hara,