کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5778482 1633776 2017 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A refined notion of arithmetically equivalent number fields, and curves with isomorphic Jacobians
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
A refined notion of arithmetically equivalent number fields, and curves with isomorphic Jacobians
چکیده انگلیسی
We construct examples of number fields which are not isomorphic but for which their adele groups, the idele groups, and the idele class groups are isomorphic. We also construct examples of projective algebraic curves which are not isomorphic but for which their Jacobian varieties are isomorphic. Both are constructed using an example in group theory provided by Leonard Scott of a finite group G and subgroups H1 and H2 which are not conjugate in G but for which the G-module Z[G/H1] is isomorphic to Z[G/H2].
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 312, 25 May 2017, Pages 198-208
نویسندگان
,