کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5778602 | 1633778 | 2017 | 63 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Tukey classification of some ideals on Ï and the lattices of weakly compact sets in Banach spaces
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We study the lattice structure of the family of weakly compact subsets of the unit ball BX of a separable Banach space X, equipped with the inclusion relation (this structure is denoted by K(BX)) and also with the parametrized family of “almost inclusion” relations KâL+εBX, where ε>0 (this structure is denoted by AK(BX)). Tukey equivalence between partially ordered sets and a suitable extension to deal with AK(BX) are used. Assuming the axiom of analytic determinacy, we prove that separable Banach spaces fall into four categories, namely: K(BX) is equivalent either to a singleton, or to ÏÏ, or to the family K(Q) of compact subsets of the rational numbers, or to the family [c]<Ï of all finite subsets of the continuum. Also under the axiom of analytic determinacy, a similar classification of AK(BX) is obtained. For separable Banach spaces not containing â1, we prove in ZFC that K(BX)â¼AK(BX) are equivalent to either {0}, ÏÏ, K(Q) or [c]<Ï. The lattice structure of the family of all weakly null subsequences of an unconditional basis is also studied.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 310, 13 April 2017, Pages 696-758
Journal: Advances in Mathematics - Volume 310, 13 April 2017, Pages 696-758
نویسندگان
A. Avilés, G. Plebanek, J. RodrÃguez,