کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5778618 1633773 2017 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Finite reflection groups and graph norms
ترجمه فارسی عنوان
گروه های انعکاسی محدود و هنجارهای گراف
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی
Given a graph H on vertex set {1,2,⋯,n} and a function f:[0,1]2→R, define‖f‖H:=|∫∏ij∈E(H)f(xi,xj)dμ|V(H)||1/|E(H)|, where μ is the Lebesgue measure on [0,1]. We say that H is norming if ‖⋅‖H is a semi-norm. A similar notion ‖⋅‖r(H) is defined by ‖f‖r(H):=‖|f|‖H and H is said to be weakly norming if ‖⋅‖r(H) is a norm. Classical results show that weakly norming graphs are necessarily bipartite. In the other direction, Hatami showed that even cycles, complete bipartite graphs, and hypercubes are all weakly norming. We demonstrate that any graph whose edges percolate in an appropriate way under the action of a certain natural family of automorphisms is weakly norming. This result includes all previously known examples of weakly norming graphs, but also allows us to identify a much broader class arising from finite reflection groups. We include several applications of our results. In particular, we define and compare a number of generalisations of Gowers' octahedral norms and we prove some new instances of Sidorenko's conjecture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 315, 31 July 2017, Pages 130-165
نویسندگان
, ,