کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5778618 | 1633773 | 2017 | 36 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Finite reflection groups and graph norms
ترجمه فارسی عنوان
گروه های انعکاسی محدود و هنجارهای گراف
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
چکیده انگلیسی
Given a graph H on vertex set {1,2,â¯,n} and a function f:[0,1]2âR, defineâfâH:=|â«âijâE(H)f(xi,xj)dμ|V(H)||1/|E(H)|, where μ is the Lebesgue measure on [0,1]. We say that H is norming if ââ
âH is a semi-norm. A similar notion ââ
âr(H) is defined by âfâr(H):=â|f|âH and H is said to be weakly norming if ââ
âr(H) is a norm. Classical results show that weakly norming graphs are necessarily bipartite. In the other direction, Hatami showed that even cycles, complete bipartite graphs, and hypercubes are all weakly norming. We demonstrate that any graph whose edges percolate in an appropriate way under the action of a certain natural family of automorphisms is weakly norming. This result includes all previously known examples of weakly norming graphs, but also allows us to identify a much broader class arising from finite reflection groups. We include several applications of our results. In particular, we define and compare a number of generalisations of Gowers' octahedral norms and we prove some new instances of Sidorenko's conjecture.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 315, 31 July 2017, Pages 130-165
Journal: Advances in Mathematics - Volume 315, 31 July 2017, Pages 130-165
نویسندگان
David Conlon, Joonkyung Lee,