کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5790152 1553966 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The evolution of methodologies for genomic prediction
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
پیش نمایش صفحه اول مقاله
The evolution of methodologies for genomic prediction
چکیده انگلیسی


- High-density genotypes are used to predict performance from estimates of allelic effects.
- Markov chain Monte Carlo samples of allelic effects are widely used to fit these models.
- This paper documents evolution of these models.

Genomic prediction of genotyped individuals utilizes estimates of the effects of alleles at many loci to predict performance. Estimates of allele substitution effects are commonly obtained from multiple regression linear models. In those models, allele substitution effects tend to be treated as random effects, which shrinks their estimates compared to treating them as fixed effects. A number of alternative models that vary subtly can be used in these endeavors. Bayesian approaches that utilize Markov chain Monte Carlo methods that repeatedly sample allele substitution effects are widely used to fit these models. Genomic prediction of non-genotyped individuals utilizes predicted marker genotypes of non-genotyped individuals as well as covariance information based on pedigree relationships. Genomic prediction methodologies continue to evolve, representing a synthesis of approaches, and this paper documents that evolution.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Livestock Science - Volume 166, August 2014, Pages 10-18
نویسندگان
, , ,