کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5896426 1154838 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Jumping sans legs: does elastic energy storage by the vertebral column power terrestrial jumps in bony fishes?
ترجمه فارسی عنوان
پاها بدون پریدن: آیا ذخیره انرژی انعطاف پذیر توسط ستون مهره ای قدرت پرش زمین در ماهی های استخوانی است؟
کلمات کلیدی
حمل و نقل زمینی، اسکلت محوری ستون فقرات، سختی انعطاف پذیر، عقب کشیدن الاستیک،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم دامی و جانورشناسی
چکیده انگلیسی
Despite having no obvious anatomical modifications to facilitate movement over land, numerous small fishes from divergent teleost lineages make brief, voluntary terrestrial forays to escape poor aquatic conditions or to pursue terrestrial prey. Once stranded, these fishes produce a coordinated and effective “tail-flip” jumping behavior, wherein lateral flexion of the axial body into a C-shape, followed by contralateral flexion of the body axis, propels the fish into a ballistic flight-path that covers a distance of multiple body lengths. We ask: how do anatomical structures that evolved in one habitat generate effective movement in a novel habitat? Within this context, we hypothesized that the mechanical properties of the axial skeleton play a critical role in producing effective overland movement, and that tail-flip jumping species demonstrate enhanced elastic energy storage through increased body flexural stiffness or increased body curvature, relative to non-jumping species. To test this hypothesis, we derived a model to predict elastic recoil work from the morphology of the vertebral (neural and hemal) spines. From ground reaction force (GRF) measurements and high-speed video, we calculated elastic recoil work, flexural stiffness, and apparent material stiffness of the body for Micropterus salmoides (a non-jumper) and Kryptolebias marmoratus (adept tail-flip jumper). The model predicted no difference between the two species in work stored by the vertebral spines, and GRF data showed that they produce the same magnitude of mass-specific elastic recoil work. Surprisingly, non-jumper M. salmoides has a stiffer body than tail-flip jumper K. marmoratus. Many tail-flip jumping species possess enlarged, fused hypural bones that support the caudal peduncle, which suggests that the localized structures, rather than the entire axial skeleton, may explain differences in terrestrial performance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Zoology - Volume 117, Issue 1, February 2014, Pages 7-18
نویسندگان
, , , ,