کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5921472 | 1570988 | 2015 | 7 صفحه PDF | دانلود رایگان |

- Paratarsotomus macropalpis has a critical thermal maximum of 59.7 °C.
- P. macropalpis displays extreme resistance to water loss.
- Mites remain surface-active at ground temperatures up to 60 °C.
- This mite appears to have the highest thermal tolerance documented for a metazoan.
Physiological performance and tolerance limits in metazoans have been widely studied and have informed our understanding of processes such as extreme heat and cold tolerance, and resistance to water loss. Because of scaling considerations, very small arthropods with extreme microclimatic niches provide promising extremophiles for testing predictive physiological models. Corollaries of small size include rapid heating and cooling (small thermal time constants) and high mass-specific metabolic and water exchange rates. This study examined thermal tolerance and water loss in the erythracarid mite Paratarsotomus macropalpis (Banks, 1916), a species that forages on the ground surface of the coastal sage scrub habitat of Southern California, USA. Unlike most surface-active diurnal arthropods, P. macropalpis remains active during the hottest parts of the day in midsummer. We measured water-loss gravimetrically and estimated the critical thermal maximum (CTmax) by exposing animals to a given temperature for 1 h and then increasing temperature sequentially. The standardized water flux of 4.4 ng hâ1 cmâ2 Paâ1, averaged for temperatures between 22 and 40 °C, is among the lowest values reported in the literature. The CTmax of 59.4 °C is, to our knowledge, the highest metazoan value reported for chronic (1-h) exposure, and closely matches maximum field substrate temperatures during animal activity. The extraordinary physiological performance seen in P. macropalpis likely reflects extreme selection resulting from its small size and resultant high mass-specific water loss rate and low thermal time-constant. Nevertheless, the high water resistance attained with a very thin lipid barrier, and the mite's exceptional thermal tolerance, challenge existing theories seeking to explain physiological limits.
Journal: Journal of Insect Physiology - Volume 82, November 2015, Pages 1-7