کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5925955 1571330 2014 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Postnatal development of eupneic ventilation and metabolism in rats chronically exposed to moderate hyperoxia
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی فیزیولوژی
پیش نمایش صفحه اول مقاله
Postnatal development of eupneic ventilation and metabolism in rats chronically exposed to moderate hyperoxia
چکیده انگلیسی
Newborn rats chronically exposed to moderate hyperoxia (60% O2) exhibit abnormal respiratory control, including decreased eupneic ventilation. To further characterize this plasticity and explore its proximate mechanisms, rats were exposed to either 21% O2 (Control) or 60% O2 (Hyperoxia) from birth until studied at 3-14 days of age (P3-P14). Normoxic ventilation was reduced in Hyperoxia rats when studied at P3, P4, and P6-7 and this was reflected in diminished arterial O2 saturations; eupneic ventilation spontaneously recovered by P13-14 despite continuous hyperoxia, or within 24 h when Hyperoxia rats were returned to room air. Normoxic metabolism was also reduced in Hyperoxia rats but could be increased by raising inspired O2 levels (to 60% O2) or by uncoupling oxidative phosphorylation within the mitochondrion (2,4-dinitrophenol). In contrast, moderate increases in inspired O2 had no effect on sustained ventilation which indicates that hypoventilation can be dissociated from hypometabolism. The ventilatory response to abrupt O2 inhalation was diminished in Hyperoxia rats at P4 and P6-7, consistent with smaller contributions of peripheral chemoreceptors to eupneic ventilation at these ages. Finally, the spontaneous respiratory rhythm generated in isolated brainstem-spinal cord preparations was significantly slower and more variable in P3-4 Hyperoxia rats than in age-matched Controls. We conclude that developmental hyperoxia impairs both peripheral and central components of eupneic ventilatory drive. Although developmental hyperoxia diminishes metabolism as well, this appears to be a regulated hypometabolism and contributes little to the observed changes in ventilation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Respiratory Physiology & Neurobiology - Volume 198, 1 July 2014, Pages 1-12
نویسندگان
, , , , , , , , ,