کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5926404 | 1571341 | 2011 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hematocrit and blood osmolality in developing chicken embryos (Gallus gallus): In vivo and in vitro regulation
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
بیوشیمی، ژنتیک و زیست شناسی مولکولی
فیزیولوژی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Hematocrit (Hct) regulation is a complex process involving potentially many factors. How such regulation develops in vertebrate embryos is still poorly understood. Thus, we investigated the role of blood pH in the regulation of Hct across developmental time in chicken embryos. We hypothesized that blood pH alterations in vitro (i.e., in a test tube) would affect Hct far more than in vivo because of in vivo compensatory regulatory processes for Hct. Large changes in Hct (through mean corpuscular volume (MCV)) and blood osmolality (Osm) occur when the blood was exposed to varying ambient temperatures (Ta's) and PCO2in vitro alongside an experimentally induced blood pH change from â¼7.3 to 8.2. However, homeostatic regulatory mechanisms apparently limited these alterations in vivo. Changes in blood pH in vitro were accompanied by hydration or dehydration of red blood cells depending on embryonic age, resulting in changes in Hct that also were specific to developmental stage, due likely to initial blood gas and [HCO3â]v values. Significant linear relationships between Hct and pH (Hct/ÎpH = â21.4%/(pH unit)), Hct and [HCO3â] (ÎHct/Î[HCO3â] = 1.6%/(mEq Lâ1)) and the mean buffer value (Î[HCO3â]/ÎpH = â13.4 (mEq Lâ1)/(pH unit)) demonstrate that both pH and [HCO3â] likely play a role in the regulation of Hct through MCV at least in vitro. Low Ta (24 °C) resulted in relatively large changes in pH with small changes in Hct and Osm in vitro with increased Ta (42 °C) conversely resulting in larger changes in both Hct and Osm. In vivo exposure to altered Ta caused age-dependent changes in Hct, demonstrating a trend towards increased Hct at higher Ta. Further, exposing embryos to a gas mixture where PCO2=5.1kPa for >4 h period at Ta of 37 or 42 °C also did not elicit a change in Hct or Osm. Presumably, homeostatic mechanisms ensured that in vivo Hct was stable during a 4-6 h temperature and/or hypercapnic stress. Thus, although blood pH decreases (induced by acute Ta increase and exposure to CO2) increase MCV and, consequently, Hct in vitro, homeostatic mechanisms operating in vivo are adequate to ensure that such environmental perturbations have little effect in vivo.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Respiratory Physiology & Neurobiology - Volume 179, Issues 2â3, 15 December 2011, Pages 142-150
Journal: Respiratory Physiology & Neurobiology - Volume 179, Issues 2â3, 15 December 2011, Pages 142-150
نویسندگان
Sarah J. Andrewartha, Hiroshi Tazawa, Warren W. Burggren,