کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
607588 1454578 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Direct numerical simulation of AC dielectrophoretic particle–particle interactive motions
ترجمه فارسی عنوان
شبیه سازی مستقیم عددی از جنس ذرات دی الکتروریس ذرات حرکتی تعاملی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
چکیده انگلیسی


• The mechanism of particle chaining under AC electric fields is numerically studied.
• AC dielectrophoretic (DEP) particle chaining is independent of the initial particle orientations.
• Differences in particle sizes affect the chaining site.
• The developed model can be applied to study AC DEP particle motions in microfluidics.

Under an AC electric field, individual particles in close proximity induce spatially non-uniform electric field around each other, accordingly resulting in mutual dielectrophoretic (DEP) forces on these particles. The resulting attractive DEP particle–particle interaction could assemble individual colloidal particles or biological cells into regular patterns, which has become a promising bottom-up fabrication technique for bio-composite materials and microscopic functional structures. In this study, we developed a transient multiphysics model under the thin electric double layer (EDL) assumption, in which the fluid flow field, AC electric field and motion of finite-size particles are simultaneously solved using an Arbitrary Lagrangian–Eulerian (ALE) numerical approach. Numerical simulations show that negative DEP particle–particle interaction always tends to attract particles and form a chain parallel to the applied electric field. Particles usually accelerate at the first stage of the attractive motion due to an increase in the DEP interactive force, however, decelerate until stationary at the second stage due to a faster increase in the repulsive hydrodynamic force. Identical particles move at the same speed during the interactive motion. In contrast, smaller particles move faster than bigger particles during the attractive motion. The developed model explains the basic mechanism of AC DEP-based particle assembly technique and provides a versatile tool to design microfluidic devices for AC DEP-based particle or cell manipulation.

Figure optionsDownload high-quality image (90 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 417, 1 March 2014, Pages 72–79
نویسندگان
, , ,