کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
608294 880576 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oil-in-water emulsification using confined impinging jets
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Oil-in-water emulsification using confined impinging jets
چکیده انگلیسی

A confined impinging jet mixing device has been used to investigate the continuous sunflower oil/water emulsification process under turbulent flow conditions with oil contents between 5% (v/v) and 10% (v/v). Various emulsifiers (Tween20, Span80, Whey Protein, Lecithin and Sodium Dodecylsulphate) varying in molecular weights have been studied. Mean droplet sizes varied with the emulsifiers used and smallest droplets were obtained under fully turbulent flow regime, i.e. at the highest jet flow rate and highest jet Reynolds Number conditions. Sodium Dodecylsulfate (SDS) produced droplets in the range of 3.8 μm while 6 μm droplets were obtained with Whey Protein. Similar droplet sizes were obtained under fully turbulent flow conditions (610 mL/min; Reynolds Number = 13,000) for oil content varying between 5% (v/v) and 10% (v/v). To investigate the smallest droplet size possible in the device, the emulsion was passed through the geometry multiple times. Multi-pass emulsification resulted in reduction in droplet size indicating that longer residence in the flow field under high shear condition allowed for breakage of droplets as well as the time for the emulsifier to stabilize the newly formed droplets, decreasing the impact of coalescence. This was confirmed by timescale analysis of the involved process steps for the droplet data obtained via experiments. Dependence of mean droplet size on the o/w interfacial tension and peak energy dissipation was also investigated.

Figure optionsDownload high-quality image (65 K)Download as PowerPoint slideHighlights
► Continuous impinging jet technique used for the first time to produce emulsions.
► Smallest emulsions produced at highest Reynolds Number ≈ 13,000.
► Different emulsifiers produce emulsion in range of 3.8–6 μm.
► Multi-passes at Reynolds Number ≈ 13,000 reduce mean emulsion size to 2.5–3 μm.
► On multi-pass, similar-size emulsions are produced at varying oil contents (5–10% v/v).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 377, Issue 1, 1 July 2012, Pages 213–221
نویسندگان
, ,