کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
608867 880610 2011 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery
چکیده انگلیسی

In this paper, folate conjugated poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)-folate) was prepared by a carbodiimide coupling reaction, i.e., the vitamin folic acid (FA) was covalently linked to the main chain of the maleate-functionalized polymer, poly(ε-caprolactone-co-4-maleate-ε-caprolactone) (P(CL-co-MCL)). Then the 5-Fluorouracil (5-FU) loaded nanoparticles of P(CL-co-MCL)-folate were achieved by solvent-evaporation method. Their properties were extensively studied by dynamic light scattering (DLS) and scan electron microscopy (SEM). DLS and SEM showed that the nanoparticles were in a well-defined spherical shape with a uniform size distribution. We also investigated the entrapment and in vitro release behavior, which indicated that the release speed of 5-FU could be well controlled and the release half-life period could reach 16.86 h, which was 26.4 times longer than that of pure 5-FU. The in vitro targeting test displayed that the 5-FU loaded P(CL-co-MCL)-folate nanoparticles exhibited an enhanced cell inhibition because folate targeting increased the concentration of 5-FU loaded P(CL-co-MCL)-folate nanoparticles in the tumor cells with folate receptor overexpressed. Meanwhile, the tumor inhibition of 5-FU loaded P(CL-co-MCL)-folate nanoparticles was much higher than that of pure 5-FU and that of 5-FU loaded P(CL-co-MCL) nanoparticles. Therefore, P(CL-co-MCL)-folate nanoparticles would be highly beneficial for biomedical and pharmaceutical applications.

The nanoparticles based poly(ε-caprolactone) have improved the solubility of the anticancer drug 5-Fluorouracil, and increased the concentration at the site of the tumor to improve the tumor inhibition.Figure optionsDownload high-quality image (75 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 354, Issue 1, 1 February 2011, Pages 202–209
نویسندگان
, , , , , ,