کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
609804 880631 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Influence of coating bath chemistry on the deposition of 3-mercaptopropyl trimethoxysilane films deposited on magnesium alloy
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Influence of coating bath chemistry on the deposition of 3-mercaptopropyl trimethoxysilane films deposited on magnesium alloy
چکیده انگلیسی

Magnesium alloys have a low specific density and a high strength to weight ratio. This makes them sought after light weight construction materials for automotive and aerospace applications. These materials have also recently become of interest for biomedical applications. Unfortunately, the use of magnesium alloys in many applications has been limited due to its high susceptibility to corrosion. One way to improve the corrosion resistance of magnesium alloys is through the deposition of protective coatings. Many of the current pretreatments/coatings available use toxic chemicals such as chromates and hydrofluoric acid. One possible environmentally friendly alternative is organosilane coatings which have been shown to offer significant corrosion protection to both aluminum alloys and steels. Organosilanes are ambifunctional molecules that are capable of covalent bonding to metal hydroxide surfaces. In order for covalent bonding to occur, the organosilane must undergo hydrolysis in the coating bath followed by a condensation reaction with the surface. There are a number of factors that influence the rates of these reactions such as pH and concentration of reactants. These factors can also influence competing reactions in solution such as oligomerization. The rates of hydrolysis and condensation of 3-mercaptopropyltrimethoxy silane in methanol have been analyzed with 1H NMR and ATR–FTIR. The results indicate that organosilane oligomers begin to form in solution before the molecules are fully hydrolyzed. The organosilane films deposited on magnesium alloy AZ91 at a variety of concentrations and pre-hydrolysis times were characterized with a combination of ATR–FTIR, ellipsometry and SEM/EDS. The results show that both organosilane film thickness and uniformity are affected by the chemistry occurring in the coating bath prior to deposition.

Development of protective coatings with optimum corrosion resistance requires an understanding of the deposition mechanisms. This paper demonstrates that the solution chemistry in the coating bath has a significant impact on the nature of organosilane films on magnesium.Figure optionsDownload high-quality image (64 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 343, Issue 2, 15 March 2010, Pages 474–483
نویسندگان
, , ,