کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
610961 | 880663 | 2009 | 7 صفحه PDF | دانلود رایگان |

Sodium montmorillonite (Na-MMT) was modified with various amounts of aminopropylisooctyl polyhedral oligomeric silsequioxane (POSS) and a second surfactant (alkyl ammonium based) via ion-exchange reactions. Interlayer spacing, interlamellar structure, and thermal and surface properties of these organoclays were characterized by wide angle X-ray diffraction, thermogravimetric analysis, and contact angle measurement. The interlayer space of POSS-modified clay (POSS-MMT) was strongly dependent on the arrangement of POSS surfactant but less dependent on the POSS concentration. The sodium ions in Na-MMT were only partially exchanged by protonized POSS due to the steric hindrance effect. In addition, the dual-surfactant-modified clays exhibited increased exchange ratios by controlling the amount of the second surfactant, resulting in a good balance in hydrophobicity and polarity of the modified clays. The resultant organoclays were mixed with polypropylene (PP) via a melt-compounding method. It was found that the dual-surfactant-modified clays with low polarity and similar hydrophobicity to PP were well dispersed in the PP matrix.
Montmorillonite is modified with aminopropylisooctyl polyhedral oligomeric silsequioxane (POSS) surfactant and an alkyl ammonium compound to form dual-surfactant-modified organoclays.Figure optionsDownload as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 333, Issue 1, 1 May 2009, Pages 164–170