کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
612050 880690 2007 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Preparation of mesostructured barium sulfate with high surface area by dispersion method and its characterization
چکیده انگلیسی

The spherical and cubic mesoporous BaSO4 particles with high surface area were successfully produced via one-step process through precipitation reaction in aqueous solution of Ba(OH)2 and H2SO4 with ethylene glycol (n-HOCH2CH2OH) as a modifying agent. The BaSO4 nanomaterial revealed that the high surface area and the mesoporous was stable up to 400 °C. Agglomerate mesoporous barium sulfate nanomaterials were obtained by the reaction of Ba2+ and SO2−4 with ethylene glycol aqueous solution. The ethylene glycol was used to control the BaSO4 particle size and to modify the surface property of the particles produced from the precipitation. The dried and calcined mesoporous BaSO4 nanomaterials were characterized by X-ray diffraction (XRD), BET surface area and N2 adsorption–desorption isotherm, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared resonance (FTIR) and thermogravimetric analysis (TGA). The as-prepared mesoporous dried BaSO4 possesses a high BET surface area of 91.56 m2 g−1, pore volume of 0.188 cm3 g−1 (P/P0=0.9849P/P0=0.9849) and pore size of 8.22 nm. The SEM indicates that the morphology of BaSO4 nanomaterial shows shell like particles up to 400 °C, after that there is drastically change in the material due to agglomeration. Synthesis of mesoporous BaSO4 nanomaterial is of significant importance for both sulphuric acid decomposition and oxidation of methane to methanol.

The mesoporous BaSO4 nanoparticles dispersed in ethylene glycol (EG) can be prepared by reacting H2SO4 with Ba(OH)2 in ethylene glycol and the resultant barium nano material have a regular ellipsoidal structure, with a shell wall thickness of 5–10 nm and an inner diameter of about 2–4 nm. The mesoporous BaSO4 nanomaterials prepared by using ethylene glycol have high surface area and their mesoporosity is stable up to 400 °C. The formation of the mesoporous structure is related both to nucleation and to the growth mechanism of the BaSO4 particles.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 316, Issue 2, 15 December 2007, Pages 645–651
نویسندگان
, , , ,