کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
612353 880696 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes
چکیده انگلیسی

Tangential streaming potential (TSP) measurements have been carried out so as to assess the electrokinetic properties of the active layer of organic nanofiltration (NF) membranes. Due to the porous structure of NF membranes, cares must be taken to convert the experimental data into zeta potential. Indeed, an assumption that is implicitly made in Smoluchowski's theory (or in related approaches accounting for the surface conduction phenomenon) is that both streaming and conduction currents involved in the streaming potential process flow through an identical path. Such an assumption does not hold with porous membranes since the conduction current is expected to flow wherever the electric conductivity differs from zero. Consequently, a non-negligible share of the conduction current is likely to flow through the membrane body filled with the electrolyte solution. This phenomenon has been taken into account by carrying out a series of TSP measurements at various channel heights. Experiments have been conducted with various electrolyte solutions. The inferred zeta potentials have been further converted into membrane volume charge densities which have been used to predict the membrane performances in terms of rejection rates. The conventional NF theory, i.e. based on a steric/Donnan exclusion mechanism, has been found to be unable to describe the experimental rejection rates. Using the volume charge density of the membrane as an adjustable parameter, it has been shown that the conventional theory even predicts the opposite sign for the membrane charge. On the other hand, the experimental rejection rates have been well described by including dielectric effects in the exclusion mechanism. In this case, a noticeable lowering of the effective dielectric constant of the electrolyte solution inside pores has been predicted (with respect to the bulk value).

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 309, Issue 2, 15 May 2007, Pages 245–252
نویسندگان
, , ,