کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
613125 | 880715 | 2007 | 13 صفحه PDF | دانلود رایگان |
Experiments that illustrate and quantify the basics of co- and counter-current spontaneous imbibition have been conducted in a series of simple model pore systems. The fundamental pore geometry is a rod in an angled round-bottomed slot with the rod touching a capping glass plate. The capillaries thus formed by the surfaces of the slot, rod and plate do not have circular cross-sections but more complicated geometric structures with angular corners. The tubes formed at each side of the rod connect at both ends. A viscous, refined oil was applied from one end. For co-current experiments, the opposite end was left open to the atmosphere and oil imbibed into both tubes. For counter-current experiments the opposite end was sealed and connected to a sensitive pressure transducer. Oil imbibed into the smaller capillary and expelled air as a series of bubbles from the end of the larger capillary. Bubble snap-off was observed to be rate-dependent and occurred at a lower curvature than that of the cylindrical meniscus that just fits inside the tube. Only the corners of the larger capillary filled with oil during counter-current imbibition. Meniscus curvatures were calculated using the Mayer and Stowe–Princen method and were compared with actual values by measuring the capillary rise in the tubes; agreement was close. A simple model for co-current and counter-current imbibition has also been developed and the predictions compared with the experimental results. The model results were in agreement with the experiments. The experiments demonstrate that the capillary back pressure generated by the interfaces and bubbles in counter-current imbibition can slow the process significantly.
A numerical model for co- and counter-current imbibition has been developed. Experiments were also carried on some simple precise model systems and the results were compared with the theoretical predictions.Figure optionsDownload as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 306, Issue 1, 1 February 2007, Pages 105–117