کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
613336 880720 2006 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Energetics of arsenate sorption on amorphous aluminum hydroxides studied using flow adsorption calorimetry
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Energetics of arsenate sorption on amorphous aluminum hydroxides studied using flow adsorption calorimetry
چکیده انگلیسی

Flow adsorption calorimetry was used to investigate the energetics of arsenate sorption on amorphous aluminum hydroxide (AHO) and its effect on surface charge and ion exchange. Arsenate sorption at pH 5.7 was exothermic and the molar heats of adsorption were quite variable, ranging from −3.0 to −66 kJ/mol. Repetitive exposure of the same sample to arsenate in the calorimeter showed that the AHO was able to regenerate a considerable amount of reactive surface over time periods as short as 15 to 20 min. The large variability in heats of arsenate adsorption and the ability to regenerate reactive surface is believed to result from the amorphous nature of the AHO used. Heats of Cl/NO3 exchange were much smaller and more consistent, ranging from about 3.0 to 6.0 kJ/mol. The molar ratio of exchangeable Cl:Al was about 6:1 for the AHO, indicating a highly porous material. At pH 5.7, arsenate sorption neutralized surface positive charge as measured by Cl/NO3 exchange. Only at the two highest loadings (>60,000 mg/kg) did arsenate sorption result in any negative surface charge as measured by Na/K exchange. These results showed that most of the arsenate was adsorbed by a mechanism that involved no increase in surface negative charge. The PZNC of the AHO decreased by about 1 pH unit when exposed to arsenate in the flow calorimeter. Exposure to arsenate in a batch system decreased the PZNC about 4 pH units. This difference in behavior between batch and flow systems was related to differences in the amount of arsenate adsorbed.

The complex reaction of arsenate with amorphous aluminum hydroxides.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Colloid and Interface Science - Volume 297, Issue 1, 1 May 2006, Pages 86–94
نویسندگان
, , ,