کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
613409 | 880721 | 2006 | 5 صفحه PDF | دانلود رایگان |

We demonstrated the fabrication of size-controlled two-dimensional iron oxide nanodots derived from the heat treatment of ferritin molecules self-immobilized on modified silicon surfaces. Ferritin molecules were immobilized onto 3-aminopropyltrimethoxysilane (3-APMS)-modified silicon surfaces by electrostatic interactions between negatively charged amino acids of ferritin molecules and amino terminal functional groups of 3-APMS. Heat treatments were performed at 400 °C for 60 min to fabricate two-dimensional nanodots based on ferritin cores. XPS and FT-IR results clearly indicate that ferritin shells were composed of amino acids and 3-APMS modifiers on silicon surfaces were eliminated by heat treatment. Nanodots on substrate surfaces corresponded to iron oxides. The size of nanodots was tunable in the range of 0–5 (±0.75) nm by in situ reactions of iron ion chelators with ferritin molecules immobilized on substrates before heat treatment.
The fabrication of size controlled two-dimensional iron oxide nanodots derived from the heat treatment of ferritin molecules self-immobilized on modified silicon surfaces was demonstrated. The size of nanodots was tunable in the range of 0–5 (±0.75) nm by in situ reactions with iron ion chelators with ferritin molecules.Figure optionsDownload as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 299, Issue 2, 15 July 2006, Pages 761–765