کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
613735 | 880727 | 2006 | 16 صفحه PDF | دانلود رایگان |

This paper focuses on the short-time adsorption kinetics of nonionic surfactants onto water/air surfaces, analyzed in the context of the mixed diffusion-barrier controlled adsorption modeling framework. Specifically, we reconcile the apparent contradiction between theoretical prediction and experimental observations on the adsorption kinetics mechanism at short times: while the mixed diffusion-barrier controlled model predicts a barrier-controlled adsorption, as well as the impossibility of a diffusion-controlled adsorption at asymptotic short times, the short-time experimental dynamic surface tension (DST) behavior of many nonionic surfactants has been interpreted to result from diffusion-controlled adsorption at asymptotic short times. This is because the short-time experimental DST of these surfactants displays a t variation, which is considered as a fingerprint for the existence of diffusion-controlled adsorption, based on the short-time asymptotic behavior of the diffusion-controlled adsorption model. As a result of this interpretation, the fundamental physical nature of the energy barrier has been proposed to be associated with high surfactant surface concentrations. In this paper, we derive a new nonasymptotic short-time formalism of the mixed diffusion-barrier controlled model to describe surfactant adsorption onto a spherical pendant-bubble surface, including determining the ranges of time and surfactant surface concentration values where the short-time formalism is applicable. Based on this formalism, we find that one can expect to observe an apparent t variation of the DST at short times even for the mixed diffusion-barrier controlled adsorption model. We analyze the consequence of this finding by re-evaluating the existing notions of the energy barrier. We conclude that the energy barrier is associated with the adsorption of a single surfactant molecule onto a clean surface.
Existence and resolution of a conceptual controversy: Understanding the t behavior of the dynamic surface pressure (Π) using a mixed-controlled adsorption modeling framework.Figure optionsDownload as PowerPoint slide
Journal: Journal of Colloid and Interface Science - Volume 296, Issue 2, 15 April 2006, Pages 442–457