کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6420111 1631785 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay
چکیده انگلیسی

In this paper, an SEIR epidemiological model with saturation incidence and a time delay describing the latent period of the disease is investigated, where it is assumed that the susceptible population is subject to logistic growth in the absence of the disease. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By means of Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if the basic reproduction number is greater than unity, sufficient conditions are obtained for the global stability of the endemic equilibrium. Numerical simulations are carried out to illustrate some theoretical results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 269, 15 October 2015, Pages 332-342
نویسندگان
, , ,