کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6420111 | 1631785 | 2015 | 11 صفحه PDF | دانلود رایگان |

In this paper, an SEIR epidemiological model with saturation incidence and a time delay describing the latent period of the disease is investigated, where it is assumed that the susceptible population is subject to logistic growth in the absence of the disease. By analyzing the corresponding characteristic equations, the local stability of a disease-free equilibrium and an endemic equilibrium is discussed. The existence of Hopf bifurcations at the endemic equilibrium is established. By means of Lyapunov functionals and LaSalle's invariance principle, it is proved that if the basic reproduction number is less than unity, the disease-free equilibrium is globally asymptotically stable and the disease dies out; if the basic reproduction number is greater than unity, sufficient conditions are obtained for the global stability of the endemic equilibrium. Numerical simulations are carried out to illustrate some theoretical results.
Journal: Applied Mathematics and Computation - Volume 269, 15 October 2015, Pages 332-342