کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6420333 1631787 2015 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Numerical approximation of 2D Fredholm integral eigenvalue problems by orthogonal wavelets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Numerical approximation of 2D Fredholm integral eigenvalue problems by orthogonal wavelets
چکیده انگلیسی

We investigate the numerical approximation of two-dimensional, second kind Fredholm integral eigenvalue problems by the Galerkin method with the Cohen-Daubechies-Vial (CDV) wavelet family. This choice provides us orthogonal bases for bounded domains, avoiding the need of periodization or domain truncation. The CDV family is indexed by the number of vanishing moments, which drives the regularity of the basis. We generate the Galerkin basis from tensorized scaling functions and employ weighted Gaussian quadratures derived from refinement equations. Numerical experiments address the relative computational cost of this approach with respect to the Haar basis and the relationship between convergence rate and number of vanishing moments.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 267, 15 September 2015, Pages 517-528
نویسندگان
, ,