کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6420699 1631798 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving the runtime of MRF based method for MRI brain segmentation
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Improving the runtime of MRF based method for MRI brain segmentation
چکیده انگلیسی

Image segmentation is one of the important parts in medical image analysis. Markov random field (MRF) is one of the successful methods for MRI image segmentation, but conventional MRF methods suffer from high computational cost. MRI images have high level of artifacts such as Partial Volume Effect (PVE), intensity non uniformity (INU) and other noises, so using global optimization methods like simulated annealing (SA) for optimization step is more appropriate than other local optimization methods such as Iterative Conditional Modes (ICM). On the other hand, these methods also has heavy computational burden and they are not appropriate for real time task. This paper uses a proper combination of clustering methods and MRF and proposes a preprocessing step for MRF method for decreasing the computational burden of MRF for segmentation. The results show that the preprocessing step increased the speed of segmentation algorithm by a factor of about 10 and have no large impact on the accuracy of segmentation. Moreover, different clustering methods can be used for the first step and estimation of the parameters. Therefore, using of powerful clustering methods can provide a better segmentation results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 256, 1 April 2015, Pages 808-818
نویسندگان
, ,