کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6421586 1631825 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces
چکیده انگلیسی

In the present paper we study the Ulam-Hyers stability of some elliptic partial differential equations on bounded domains with Lipschitz boundary. We use direct techniques and also some abstract methods of Picard operators.The novelty of our approach consists in the fact that we are working in Sobolev spaces and we do not need to know the explicit solutions of the problems or the Green functions of the elliptic operators. We show that in some cases the Ulam-Hyers stability of linear elliptic problems mainly follows from standard estimations for elliptic PDEs, Cauchy-Schwartz and Poincaré type inequalities or Lax-Milgram type theorems.We obtain powerful results in the sense that working in Sobolev spaces, we can control also the derivatives of the solutions, instead of the known point-wise estimations. Moreover our results for the nonlinear problems generalize in some sense some recent results from the literature (see for example Lazăr (2012) [8]).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 229, 25 February 2014, Pages 131-138
نویسندگان
, ,