کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6422120 1340618 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local boundary element based a new finite difference representation for Poisson equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Local boundary element based a new finite difference representation for Poisson equations
چکیده انگلیسی

We present a new finite difference method for solving Poisson's equation with the Dirichlet boundary condition on a more general type of discretization for given domain, based on the local boundary element method. The method uses the piecewise linear approximation and produce a sparse linear system despite the use of boundary elements. The discrete maximum principal is established without any angle condition for the discrete cells of the discretization. The convergence behavior is comparable to that of standard finite difference methods on rectangle grids, and equally super-convergence property is attained on more general meshes when the solution u is in the function class C2,α(Ω¯)∪C3(Ω¯),0<α<1. Also, if u∈C3,1(Ω¯), the standard O(h2) convergence is obtained. Numerical tests are given, which illustrate our results.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 12, 15 February 2011, Pages 5186-5198
نویسندگان
, , ,