کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6422120 | 1340618 | 2011 | 13 صفحه PDF | دانلود رایگان |

We present a new finite difference method for solving Poisson's equation with the Dirichlet boundary condition on a more general type of discretization for given domain, based on the local boundary element method. The method uses the piecewise linear approximation and produce a sparse linear system despite the use of boundary elements. The discrete maximum principal is established without any angle condition for the discrete cells of the discretization. The convergence behavior is comparable to that of standard finite difference methods on rectangle grids, and equally super-convergence property is attained on more general meshes when the solution u is in the function class C2,α(Ω¯)âªC3(Ω¯),0<α<1. Also, if uâC3,1(Ω¯), the standard O(h2) convergence is obtained. Numerical tests are given, which illustrate our results.
Journal: Applied Mathematics and Computation - Volume 217, Issue 12, 15 February 2011, Pages 5186-5198