کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6422237 1340618 2011 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات کاربردی
پیش نمایش صفحه اول مقاله
Some generalizations of the Apostol-Genocchi polynomials and the Stirling numbers of the second kind
چکیده انگلیسی

Recently, the authors introduced some generalizations of the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials (see [Q.-M. Luo, H.M. Srivastava, J. Math. Anal. Appl. 308 (2005) 290-302] and [Q.-M. Luo, Taiwanese J. Math. 10 (2006) 917-925]). The main object of this paper is to investigate an analogous generalization of the Genocchi polynomials of higher order, that is, the so-called Apostol-Genocchi polynomials of higher order. For these generalized Apostol-Genocchi polynomials, we establish several elementary properties, provide some explicit relationships with the Apostol-Bernoulli polynomials and the Apostol-Euler polynomials, and derive various explicit series representations in terms of the Gaussian hypergeometric function and the Hurwitz (or generalized) zeta function. We also deduce their special cases and applications which are shown here to lead to the corresponding results for the Genocchi and Euler polynomials of higher order. By introducing an analogue of the Stirling numbers of the second kind, that is, the so-called λ-Stirling numbers of the second kind, we derive some basic properties and formulas and consider some interesting applications to the family of the Apostol type polynomials. Furthermore, we also correct an error in a previous paper [Q.-M. Luo, H.M. Srivastava, Comput. Math. Appl. 51 (2006) 631-642] and pose two open problems on the subject of our investigation.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematics and Computation - Volume 217, Issue 12, 15 February 2011, Pages 5702-5728
نویسندگان
, ,