کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6424060 1632767 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bilateral truncated Jacobi's identity
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Bilateral truncated Jacobi's identity
چکیده انگلیسی

Recently, Andrews and Merca considered the truncated version of Euler's pentagonal number theorem and obtained a non-negative result on the coefficients of this truncated series. Guo and Zeng showed the coefficients of two truncated Gauss' identities are non-negative and they conjectured that truncated Jacobi's identity also has non-negative coefficients. Mao provided a proof of this conjecture by using an algebraic method. In this paper, we consider bilateral truncated Jacobi's identity and show that when the upper and lower bounds of the summation satisfy some certain restrictions, then this bilateral truncated identity has non-negative coefficients. As a corollary, we show the conjecture of Guo and Zeng holds. Our proof is purely combinatorial and mainly based on a bijection for Jacobi's identity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 51, January 2016, Pages 255-267
نویسندگان
, , ,