کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6424140 | 1632769 | 2015 | 6 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On a topological relaxation of a conjecture of ErdÅs and NeÅ¡etÅil
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The strong chromatic index of a graph G, denoted by sâ²(G), is the minimum number of colors in a coloring of edges of G such that each color class is an induced matching. ErdÅs and NeÅ¡etÅil conjectured that sâ²(G)â¤54Î2 for all graphs G with maximum degree Î. The problem is far from being solved and the best known upper bound on sâ²(G) is 1.99Î2, even in the case when G is bipartite.In this note we study the topological strong chromatic index, denoted by stâ²(G), defined as the Z2-index of a topological space obtained from the graph. It is known that sâ²(G)â¥stâ²(G). We show that for bipartite graphs G we have stâ²(G)â¤1.703Î2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 49, October 2015, Pages 188-193
Journal: European Journal of Combinatorics - Volume 49, October 2015, Pages 188-193
نویسندگان
MichaÅ DÄbski,