کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6424184 1632784 2014 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A note on the Manickam-Miklós-Singhi conjecture
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
A note on the Manickam-Miklós-Singhi conjecture
چکیده انگلیسی

For k∈Z+, let f(k) be the minimum integer N such that for all n≥N, every set of n real numbers with nonnegative sum has at least (n−1k−1)k-element subsets whose sum is also nonnegative. In 1988, Manickam, Miklós, and Singhi proved that f(k) exists and conjectured that f(k)≤4k. In this note, we prove f(3)=11, f(4)≤24, and f(5)≤40, which improves previous upper bounds in these cases. Moreover, we show how our method could potentially yield a quadratic upper bound on f(k). We end by discussing how our methods apply to a vector space analogue of the Manickam-Miklós-Singhi conjecture.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 35, January 2014, Pages 131-140
نویسندگان
,