کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6424333 1632785 2013 25 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Products of two atoms in Krull monoids and arithmetical characterizations of class groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات گسسته و ترکیبات
پیش نمایش صفحه اول مقاله
Products of two atoms in Krull monoids and arithmetical characterizations of class groups
چکیده انگلیسی

Let H be a Krull monoid with finite class group G such that every class contains a prime divisor and let D(G) be the Davenport constant of G. Then a product of two atoms of H can be written as a product of at most D(G) atoms. We study this extremal case and consider the set U{2,D(G)}(H) defined as the set of all l∈N with the following property: there are two atoms u,v∈H such that uv can be written as a product of l atoms as well as a product of D(G) atoms. If G is cyclic, then U{2,D(G)}(H)={2,D(G)}. If G has rank two, then we show that (apart from some exceptional cases) U{2,D(G)}(H)=[2,D(G)]∖{3}. This result is based on the recent characterization of all minimal zero-sum sequences of maximal length over groups of rank two. As a consequence, we are able to show that the arithmetical factorization properties encoded in the sets of lengths of a rank 2 prime power order group uniquely characterizes the group.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Combinatorics - Volume 34, Issue 8, November 2013, Pages 1244-1268
نویسندگان
, , , ,