کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425068 1633783 2017 75 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Moduli of curves, Gröbner bases, and the Krichever map
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Moduli of curves, Gröbner bases, and the Krichever map
چکیده انگلیسی

We study moduli spaces of (possibly non-nodal) curves (C,p1,…,pn) of arithmetic genus g with n smooth marked points, equipped with nonzero tangent vectors, such that OC(p1+…+pn) is ample and H1(OC(a1p1+…+anpn))=0 for given integer weights a=(a1,…,an) such that ai≥0 and ∑ai=g. We show that each such moduli space U˜g,nns(a) is an affine scheme of finite type, and the Krichever map identifies it with the quotient of an explicit locally closed subscheme of the Sato Grassmannian by the free action of the group of changes of formal parameters. We study the GIT quotients of U˜g,nns(a) by the natural torus action and show that some of the corresponding stack quotients give modular compactifications of Mg,n with projective coarse moduli spaces. More generally, using similar techniques, we construct moduli spaces of curves with chains of divisors supported at marked points, with prescribed number of sections, which in the case n=1 corresponds to specifying the Weierstrass gap sequence at the marked point.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 305, 10 January 2017, Pages 682-756
نویسندگان
,