کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425073 1633783 2017 53 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bounding the equivariant Betti numbers of symmetric semi-algebraic sets
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Bounding the equivariant Betti numbers of symmetric semi-algebraic sets
چکیده انگلیسی

Let R be a real closed field. The problem of obtaining tight bounds on the Betti numbers of semi-algebraic subsets of Rk in terms of the number and degrees of the defining polynomials has been an important problem in real algebraic geometry with the first results due to Oleĭnik and Petrovskiĭ, Thom and Milnor. These bounds are all exponential in the number of variables k. Motivated by several applications in real algebraic geometry, as well as in theoretical computer science, where such bounds have found applications, we consider in this paper the problem of bounding the equivariant Betti numbers of symmetric algebraic and semi-algebraic subsets of Rk. We obtain several asymptotically tight upper bounds. In particular, we prove that if S⊂Rk is a semi-algebraic subset defined by a finite set of s symmetric polynomials of degree at most d, then the sum of the Sk-equivariant Betti numbers of S with coefficients in Q is bounded by (skd)O(d). Unlike the classical bounds on the ordinary Betti numbers of real algebraic varieties and semi-algebraic sets, the above bound is polynomial in k when the degrees of the defining polynomials are bounded by a constant. As an application we improve the best known bound on the ordinary Betti numbers of the projection of a compact algebraic set improving for any fixed degree the best previously known bound for this problem due to Gabrielov, Vorobjov and Zell.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 305, 10 January 2017, Pages 803-855
نویسندگان
, ,