کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425265 1633796 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Non-degenerate Liouville tori are KAM stable
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Non-degenerate Liouville tori are KAM stable
چکیده انگلیسی
In this short note, we prove that a quasi-periodic torus, with a non-resonant frequency (that can be Diophantine or Liouville) and which is invariant by a sufficiently regular Hamiltonian flow, is KAM stable provided it is Kolmogorov non-degenerate. When the Hamiltonian is smooth (respectively Gevrey-smooth, respectively real-analytic), the invariant tori are smooth (respectively Gevrey-smooth, respectively real-analytic). This answers a question raised in a recent work by Eliasson, Fayad and Krikorian [6]. We also take the opportunity to ask other questions concerning the stability of non-resonant invariant quasi-periodic tori in (analytic or smooth) Hamiltonian systems.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 292, 9 April 2016, Pages 42-51
نویسندگان
,