کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425267 1633796 2016 59 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Spectral instability of general symmetric shear flows in a two-dimensional channel
ترجمه فارسی عنوان
بی ثباتی طیفی جریان کلی برشی متقارن در یک کانال دو بعدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

In this paper, we prove the spectral instability of general symmetric shear flows of the incompressible Navier-Stokes equations at a high Reynolds number in a two-dimensional channel. This includes shear flows that are spectrally stable to the corresponding Euler equations, and thus for the first time, provides a complete mathematical proof of the viscous destabilization phenomenon, pointed out by Heisenberg (1924) [5], C.C. Lin (1944) [9] and Tollmien (1947) [17], among others. Precisely, we construct exact unstable eigenvalues and eigenfunctions of the linearized Navier-Stokes equations around symmetric shear flows, showing that the solution could grow slowly at the rate of et/αR, where R is the sufficiently large Reynolds number and α is the small spatial frequency that remains between lower and upper marginal stability curves: αlow(R)≈R−1/7 and αup(R)≈R−1/11. We introduce a new, operator-based approach, which avoids to deal with matching inner and outer asymptotic expansions, but instead involves a careful study of singularity in the critical layers by deriving pointwise bounds on the Green function of the corresponding Rayleigh and Airy operators.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 292, 9 April 2016, Pages 52-110
نویسندگان
, , ,