کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425617 1633820 2015 51 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators
چکیده انگلیسی
Let P be a classical pseudodifferential operator of order m∈C on an n-dimensional C∞ manifold Ω1. For the truncation PΩ to a smooth subset Ω there is a well-known theory of boundary value problems when PΩ has the transmission property (preserves C∞(Ω¯)) and is of integer order; the calculus of Boutet de Monvel. Many interesting operators, such as for example complex powers of the Laplacian (−Δ)μ with μ∉Z, are not covered. They have instead the μ-transmission property defined in Hörmander's books, mapping xnμC∞(Ω¯) into C∞(Ω¯). In an unpublished lecture note from 1965, Hörmander described an L2-solvability theory for μ-transmission operators, departing from Vishik and Eskin's results. We here develop the theory in Lp Sobolev spaces (1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 268, 2 January 2015, Pages 478-528
نویسندگان
,