کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6425617 | 1633820 | 2015 | 51 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let P be a classical pseudodifferential operator of order mâC on an n-dimensional Câ manifold Ω1. For the truncation PΩ to a smooth subset Ω there is a well-known theory of boundary value problems when PΩ has the transmission property (preserves Câ(Ω¯)) and is of integer order; the calculus of Boutet de Monvel. Many interesting operators, such as for example complex powers of the Laplacian (âÎ)μ with μâZ, are not covered. They have instead the μ-transmission property defined in Hörmander's books, mapping xnμCâ(Ω¯) into Câ(Ω¯). In an unpublished lecture note from 1965, Hörmander described an L2-solvability theory for μ-transmission operators, departing from Vishik and Eskin's results. We here develop the theory in Lp Sobolev spaces (1
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 268, 2 January 2015, Pages 478-528
Journal: Advances in Mathematics - Volume 268, 2 January 2015, Pages 478-528
نویسندگان
Gerd Grubb,