کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6425697 1633838 2014 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Motivic bivariant characteristic classes
ترجمه فارسی عنوان
کلاس های خصوصی دوطرفه موتیف
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
چکیده انگلیسی

Let K0(V/X) be the relative Grothendieck group of varieties over X∈Obj(V), with V=Vk(qp) (resp. V=Vcan) the category of (quasi-projective) algebraic (resp. compact complex analytic) varieties over a base field k. Then we constructed the motivic Hirzebruch class transformation Ty⁎:K0(V/X)→H⁎(X)⊗Q[y] in the algebraic context for k of characteristic zero, with H⁎(X)=CH⁎(X) (resp. in the complex algebraic or analytic context, with H⁎(X)=H2⁎BM(X)). It “unifies” the well-known three characteristic class transformations of singular varieties: MacPhersonʼs Chern class, Baum-Fulton-MacPhersonʼs Todd class and the L-class of Goresky-MacPherson and Cappell-Shaneson. In this paper we construct a bivariant relative Grothendieck group K0(V/X→Y) for V=Vk(qp) (resp., Vcan) so that K0(V/X→pt)=K0(V/X) in the algebraic context with k of characteristic zero (resp., complex analytic context).We also construct in the algebraic context (in any characteristic) two Grothendieck transformations mCy=Λymot:K0(Vqp/X→Y)→Kalg(X→Y)⊗Z[y] and Ty:K0(Vqp/X→Y)→H(X→Y)⊗Q[y] with Kalg(f) the bivariant algebraic K-theory of f-perfect complexes and H the bivariant operational Chow groups (or the even degree bivariant homology in the case k=C). Evaluating at y=0, we get a “motivic” lift T0 of Fulton-MacPhersonʼs bivariant Riemann-Roch transformation τ:Kalg→H⊗Q. The covariant transformations mCy:K0(Vqp/X→pt)→G0(X)⊗Z[y] and Ty⁎:K0(Vqp/X→pt)→H⁎(X)⊗Q[y] agree for k of characteristic zero with our motivic Chern and Hirzebruch class transformations defined on K0(Vqp/X). Finally, evaluating at y=−1, for k of characteristic zero we get a “motivic” lift T−1 of Ernström-Yokuraʼs bivariant Chern class transformation γ:F˜→CH.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 250, 15 January 2014, Pages 611-649
نویسندگان
, ,