کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6425709 | 1633832 | 2014 | 50 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Deformation of hypersurfaces preserving the Möbius metric and a reduction theorem
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A hypersurface without umbilics in the (n+1)-dimensional Euclidean space f:MnâRn+1 is known to be determined by the Möbius metric g and the Möbius second fundamental form B up to a Möbius transformation when n⩾3. In this paper we consider Möbius rigidity for hypersurfaces and deformations of a hypersurface preserving the Möbius metric in the high dimensional case n⩾4. When the highest multiplicity of principal curvatures is less than nâ2, the hypersurface is Möbius rigid. When the multiplicities of all principal curvatures are constant, deformable hypersurfaces and the possible deformations are also classified completely. In addition, we establish a reduction theorem characterizing the classical construction of cylinders, cones, and rotational hypersurfaces, which helps to find all the non-trivial deformable examples in our classification with wider application in the future.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 256, 1 May 2014, Pages 156-205
Journal: Advances in Mathematics - Volume 256, 1 May 2014, Pages 156-205
نویسندگان
Tongzhu Li, Xiang Ma, Changping Wang,