کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6425913 | 1345396 | 2012 | 24 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Stability of eϵ-Lipschitz and co-Lipschitz maps in Gromov-Hausdorff topology
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
A submetry is a metric analogue of a Riemannian submersion, and an eϵ-Lipschitz and co-Lipschitz map is a metric analogue of an ϵ-Riemannian submersion. The stability of submetries from Alexandrov spaces to Riemannian manifolds in the Gromov-Hausdorff topology can be viewed as a parametrized version of Perelman's stability theorem in Alexandrov geometry. In this paper, we will study the stability of eϵ-Lipschitz and co-Lipschitz maps. Our approach is based on controlled homotopy theory and semi-concave functions on Alexandrov spaces. As applications of our stability results, we generalize fiber bundle finiteness results on Riemannian submersions and partially generalize the stability of submetries.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 231, Issue 2, 1 October 2012, Pages 774-797
Journal: Advances in Mathematics - Volume 231, Issue 2, 1 October 2012, Pages 774-797
نویسندگان
Xiaochun Rong, Shicheng Xu,