کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6426133 | 1345426 | 2011 | 48 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Totally nonnegative cells and matrix Poisson varieties
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We describe explicitly the admissible families of minors for the totally nonnegative cells of real matrices, that is, the families of minors that produce nonempty cells in the cell decompositions of spaces of totally nonnegative matrices introduced by A. Postnikov. In order to do this, we relate the totally nonnegative cells to torus orbits of symplectic leaves of the Poisson varieties of complex matrices. In particular, we describe the minors that vanish on a torus orbit of symplectic leaves, we prove that such families of minors are exactly the admissible families, and we show that the nonempty totally nonnegative cells are the intersections of the torus orbits of symplectic leaves with the spaces of totally nonnegative matrices.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 226, Issue 1, 15 January 2011, Pages 779-826
Journal: Advances in Mathematics - Volume 226, Issue 1, 15 January 2011, Pages 779-826
نویسندگان
K.R. Goodearl, S. Launois, T.H. Lenagan,