کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6426177 1345430 2011 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the existence and nonexistence of extremal metrics on toric Kähler surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات ریاضیات (عمومی)
پیش نمایش صفحه اول مقاله
On the existence and nonexistence of extremal metrics on toric Kähler surfaces
چکیده انگلیسی

In this paper we study the existence of extremal metrics on toric Kähler surfaces. We show that on every toric Kähler surface, there exists a Kähler class in which the surface admits an extremal metric of Calabi. We found a toric Kähler surface of 9 TC2-fixed points which admits an unstable Kähler class and there is no extremal metric of Calabi in it. Moreover, we prove a characterization of the K-stability of toric surfaces by simple piecewise linear functions. As an application, we show that among all toric Kähler surfaces with 5 or 6 TC2-fixed points, CP2#3CP¯2 is the only one which allows vanishing Futaki invariant and admits extremal metrics of constant scalar curvature.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Advances in Mathematics - Volume 226, Issue 5, 20 March 2011, Pages 4429-4455
نویسندگان
, ,