کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6479129 1362757 2016 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A Bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data
ترجمه فارسی عنوان
مدل مخلوط بیزی برای ارزیابی میانگین زمان پیوند کوتاه مدت با استفاده از داده های محدود اطلاعات محدود در مقیاس بزرگ
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی عمران و سازه
چکیده انگلیسی

Accurate estimation and prediction of urban link travel times are important for urban traffic operations and management. This paper develops a Bayesian mixture model to estimate short-term average urban link travel times using large-scale trip-based data with partial information. Unlike typical GPS trajectory data, trip-based data from taxies or other sources provide limited trip level information, which only contains the trip origin and destination locations, trip travel times and distances, etc. The focus of this study is to develop a robust probabilistic short-term average link travel time estimation model and demonstrate the feasibility of estimating network conditions using large-scale trip level information. In the model, the path taken by each trip is considered as latent and modeled using a multinomial logit distribution. The observed trip data given the possible path set and the mean and variance of the average link travel times can thus be characterized using a finite mixture distribution. A transition model is also introduced to serve as an informative prior that captures the temporal and spatial dependencies of link travel times. A solution approach based on the expectation–maximization (EM) algorithm is proposed to solve the problem. The model is tested on estimating the mean and variance of the average link travel times for 30 min time intervals using a large-scale taxi trip dataset from New York City. More robust estimation results are obtained owing to the adoption of the Bayesian framework.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Automation in Construction - Volume 72, Part 3, December 2016, Pages 237–246