کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
653796 | 885215 | 2010 | 12 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical investigation of natural convection phenomena in a uniformly heated circular cylinder immersed in square enclosure filled with air at different vertical locations
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
In this model, a numerical study of two dimensional steady natural convection is performed for a uniform heat source applied on the inner circular cylinder in a square air (Pr = 0.7) filled enclosure in which all boundaries are assumed to be isothermal (at a constant low temperature). The developed mathematical model is governed by the coupled equations of continuity, momentum and energy and is solved by finite volume method. The effects of vertical cylinder locations and Rayleigh numbers on fluid flow and heat transfer performance are investigated. Rayleigh number is varied from 103 to 106 and the location of the inner cylinder is changed vertically along the centerline of the enclosure from â 0.25 L to 0.25 L upward and downward, respectively. It is found that at small Rayleigh numbers does not have much influence on the flow field while at high Rayleigh numbers have considerable effect on the flow pattern. In addition, the numerical solutions yield a two cellular flow field between the inner cylinder and the enclosure. Also, the total average Nusselt number behaves nonlinearly as a function of locations. Results are presented in terms of the streamlines, isotherms, local and average Nusselt numbers. Detailed results of the numerical has been compared with literature ones, and it gives a reliable agreement.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 37, Issue 8, October 2010, Pages 1115-1126
Journal: International Communications in Heat and Mass Transfer - Volume 37, Issue 8, October 2010, Pages 1115-1126
نویسندگان
Salam Hadi Hussain, Ahmed Kadhim Hussein,