کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
653912 | 885220 | 2009 | 4 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Prediction of convection heat transfer in converging–diverging tube for laminar air flowing using back-propagation neural network
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The ability of an artificial neural network (ANN) model for heat transfer analysis in a converging–diverging tube is studied. Back propagation learning algorithm, the most common method for ANNs, was used in training and testing/validation the network. It is trained with selected values of the Reynolds numbers (Re), Prandtl numbers (Pr), half taper angle (θ), aspect ratio (Lcyc/Dmax), and Nusselt number (Nu). The trained network is the used to make predictions of the Nusselt numbers. The accuracy between selected data and ANNs results was achieved with a mean absolute relative error less than 1.5%. This shows that well trained neural network model provided fast, accurate and consistent results.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 36, Issue 6, July 2009, Pages 614–617
Journal: International Communications in Heat and Mass Transfer - Volume 36, Issue 6, July 2009, Pages 614–617
نویسندگان
Imdat Taymaz, Yasar Islamoglu,