کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
654445 885245 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experimental study of forced and free convective heat transfer in the thermal entry region of horizontal concentric annuli
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Experimental study of forced and free convective heat transfer in the thermal entry region of horizontal concentric annuli
چکیده انگلیسی

Forced and free convective heat transfer for thermally developing and thermally fully developed laminar air flow inside horizontal concentric annuli in the thermal entrance length has been experimentally investigated. The experimental setup consists of a stainless steel annulus having a radius ratio of 2 and an inner tube with a heated length of 900 mm subjected to a constant wall heat flux boundary condition and an adiabatic outer annulus. The investigation covers Reynolds number range from 200 to 1000, the Grashof number was ranged from 6.2 × 105 to 1.2 × 107. The entrance sections used were long tube with length of 2520 mm (L/Dh = 63) and short tube with length of 504 mm (L/Dh = 12.6). The surface temperature distribution along the inner tube surface, and the local Nusselt number distribution versus dimensionless axial distance Zt were presented and discussed. It is inferred that the free convection effects tended to decrease the heat transfer at low Re number while to increase the heat transfer for high Re number. This investigation reveals that the Nusselt number values were considerably greater than the corresponding values for fully developed combined convection over a significant portion of the annulus. The average heat transfer results were correlated in terms of the relevant dimensionless variables with an empirical correlation. The local Nusselt number results were compared with available literature and show similar trend and satisfactory agreement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Communications in Heat and Mass Transfer - Volume 37, Issue 7, August 2010, Pages 739–747
نویسندگان
, , ,