کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
655991 1457651 2011 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow
چکیده انگلیسی

The study considers algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow, focusing in particular on momentum and heat transfer (so-called ‘convective boiling’) through the annular liquid film. In contrast with single-phase wall-bounded flow theory, shear-driven annular liquid films are assumed here to behave as fluid-bounded flows, mostly interacting with the shearing gas-entrained droplets core flow. Besides providing velocity and temperature profiles through the liquid film, the turbulence model proposed here predicts key parameters such as the average liquid film thickness, the void fraction and the convective boiling heat transfer coefficient with accuracies comparable or better than those of leading design correlations. This turbulence model is part of a unified annular flow modeling suite that includes methods to predict the entrained liquid fraction and the axial frictional pressure gradient. The underlying heat transfer database covers nine fluids (water, two hydrocarbons and six refrigerants) for vertical and horizontal tubes of 1.03–14.4 mm diameter and pressures of 0.1–7.2 MPa. Importantly, this study shows that there appears to be no macro-to-microscale transition when it comes to annular flow. Simply better physical modeling is required to span this range.


► New algebraic turbulence model for annular two-phase flow.
► Both adiabatic and evaporating flow conditions covered.
► Large underlying experimental database (2457 points).
► New method predicts liquid film thickness, void fraction and heat transfer coefficient.
► New method predictions outperform existing correlations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Fluid Flow - Volume 32, Issue 4, August 2011, Pages 805–817
نویسندگان
, ,