کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6589958 456851 2015 68 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes
ترجمه فارسی عنوان
روش مدل سازی حسگر نرم افزاری چند متغیری با استفاده از یادگیری محلی و رگرسیون بردار آنلاین پشتیبانی برای فرایندهای دسته ای غیر همزمان خطی
کلمات کلیدی
سنسور نرم سازگار، فرآیند دسته ای، تغییرات زمانی درون گروهی و بین گروهی، رگرسیون بردار آنلاین پشتیبانی، یادگیری گروه بیزی، جبران خسارت،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی
Batch processes are often characterized by inherent nonlinearity, multiplicity of operating phases, and batch-to-batch variations, which poses great challenges for accurate and reliable online prediction of soft sensor. Especially, the soft sensor built with old data may encounter performance deterioration due to a failure of capturing the time-variant behaviors of batch processes, thus adaptive strategies are necessary. Unfortunately, conventional adaptive soft sensors cannot efficiently account for the within-batch as well as between-batch time-variant changes in batch process characteristics, which results in poor prediction accuracy. Therefore, a novel multi-model adaptive soft sensor modeling method is proposed based on the local learning framework and online support vector regression (OSVR) for nonlinear time-variant batch processes. First, a batch process is identified with a set of local domains and then the localized OSVR models are built for all isolated domains. Further, the estimation for a query data is obtained by adaptively combining multiple local models that perform best on the similar samples to the query point. The proposed multi-model OSVR (MOSVR) method provides four types of adaptation strategies: (i) adaptive combination based on Bayesian ensemble learning; (ii) online offset compensation; (iii) incremental updating of local models; and (iv) database updating. The effectiveness of the MOSVR approach and its superiority over traditional adaptive soft sensors in dealing with the within-batch and between-batch shifting dynamics is demonstrated through a simulated fed-batch penicillin fermentation process as well as an industrial fed-batch chlortetracycline fermentation process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Science - Volume 131, 28 July 2015, Pages 282-303
نویسندگان
, , , , , ,